Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 20(4): 4444-53, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418204

RESUMO

The refractive indexes, material attenuation and damage fractions of a multi-step ion implanted Lithium Niobate (LiNbO3) waveguide were analyzed as functions of the annealing temperatures. An almost flat damage depth profile was designed to reduce the uncertainties related to the indexes profile shape, thus providing a better test-case for the characterizations. The measurements performed on the fabricated optical waveguides confirmed the predicted step-index profiles showing that the light is confined inside the damaged layer. The low measured attenuation (less than 0.8 dB/cm @ 632.8 nm) makes the obtained waveguide attractive for device fabrication.

2.
Orig Life Evol Biosph ; 36(5-6): 597-603, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17136430

RESUMO

Absorption or emission spectroscopy is a powerful tool for detecting chemical compounds, diluted in fluid media: the sensitivity of this technique depends on the optical path of the source radiation, on the spectral window used for analysis and on the spectrometer performances. In this view, we designed and produced the first prototypes of an integrated scanning Fourier Transform Microinterferometer with Mach-Zehnder geometry, by using MEOS (Micro Electro Optical Systems) technologies. The microdevice, obtained by fabricating integrated optical waveguides on LiNbO(3) (LN) crystals, is electrically driven, without moving parts, by exploiting the electrooptical properties of the material. The microdevice operates the Fourier Transform of the input radiation spectral distribution, which can be reconstructed starting from the output signal by means of Fast Fourier Transform (FFT) techniques. The microinterferometer weights few grams, the power consumption is of a few mW and, in principle, can operate in the LN transmittance range (0.36-4.5 microm). The microinterferometer performances were preliminary tested in the (0.4-1.7 microm) spectral window. In the Visible region (0.4-0.7 mum) this microsystem demonstrated a spectral resolution suitable for detecting the characteristic lines of the solar spectrum together with the absorption bands of common gases present in Earth's atmosphere. In a further experiment we tested its performances for gas trace detection by using a calibrated NO(2) optical gas cell, showing the possibility to reveal up to 10 ppb, when suitable optical paths are used. Finally, colorimetry tests for the titration of an organic dye (E131) in alcohol solution are presented.


Assuntos
Interferometria/instrumentação , Nióbio/química , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Cristalização , Desenho de Equipamento , Gases/análise , Gases/química , Interferometria/métodos , Miniaturização , Dióxido de Nitrogênio/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...